ANNA UNIVERSITY, CHENNAI
NON- AUTONOMOUS COLLEGES
AFFILIATED TO ANNA UNIVERSITY
M.E. COMPUTER SCIENCE AND ENGINEERING

REGULATIONS 2025

PROGRAMME OUTCOMES (POs):

PO Programme Outcomes

PO1 An ability to independently carry out research /investigation and development
work to solve practical problems

PO2 An ability to write and present a substantial technical report/document.

PO3 Students should be able to demonstrate a degree of mastery over the area as per

the specialization of the program. The mastery should be at a level higher than

the requirements in the appropriate bachelor program

PROGRAMME SPECIFIC OUTCOMES:

PSO1: Advanced Computing and Problem Solving: Analyze, design, and implement

advanced algorithms, architectures, and computational models to develop
sustainable and scalable solutions, aligning with industry and societal needs to

solve complex problems in diverse domains.

PSO2:

Research and Innovation Competence: Undertake independent research and apply
advanced tools and methodologies to propose innovative solutions for real-world

and interdisciplinary computing challenges, demonstrating research aptitude.

ANNA UNIVERSITY, CHENNAI

POSTGRADUATE CURRICULUM (NON-AUTONOMOUS AFFILIATED INSTITUTIONS)

Programme: M.E. Computer Science and Engineering

Abbreviations:

BS - Basic Science (Mathematics)

ES — Engineering Science (Programme Core (PC),

Programme Elective (PE))

SD — Skill Development

SL — Self Learning

OE — Open Elective

Regulations: 2025

L — Laboratory Course

T - Theory

LIT — Laboratory Integrated Theory

PW — Project Work

TCP - Total Contact Period(s)

Semester |
Periods
S. | Course Course Title Type | Per week | TCp | Credits | Category
No. Code
LIT|P
Advanced Mathematical
1. | MA25C07 Methods (CSIE) T |3|1]|0 4 4 BS
2. | cpascoy | Advanced Data Structures | (-1 5 1o | 4 | 7 5 | ES(PC)
and Algorithms
3. | cpascop | Advanced Database T [3](0]|0]| 3 3 | ES(PC)
Technologies
4. | cpascos | Advanced Operating T |3]|0|0]| 3 3 | ES(PC)
Systems
5. | CP25C04 | Advanced Compiler Design T |[3]0|0 3 3 ES (PC)
6. | CP25101 | Technical Seminar - |0]0] 2 2 1 SD
Total Credits | 22 19

Semester Il

s. | Periods per
. ourse
i week i
No.| Code Course Title Type TCP |Credits | Category
T
1. Multicore Architectures LIT| 3|0 2 5 4 ES (PC)
5 ArtIfIC.Ial Intelllggnce and T 31olo 3 3 ES (PC)
Machine Learning
3 Cloud .and Big Data T 310l 0 3 3 ES (PC)
Analytics
4. Quantum Computing T 20| 0 2 ES (PC)
5. Programme Elective | T 0O 3 ES (PE)
6. Industry Oriented Course | - 1100 1 SD
7. Industrial Training - -l -] - - 2 SD
8. Self-Learning Course - -l -] - - 1 -
Total Credits | 17 19
Semester lli
s. | c Periods
. ourse
i er week i
No.| Code Course Title Type | P TCP | Credits | Category
LI T|P
1. Programme Elective Il T [3/]0]0 3 3 ES(PE)
2. Programme Elective llI T [3/]0]0 3 3 ES(PE)
3. Programme Elective IV T [3/]0]0 3 3 ES(PE)
4. Open Elective - 3010 3 3 -
5. Industry-Oriented Course - 17010 1 1 SD
6. Project Work | - 0] 0 [12] 12 6 SD
Total Credits | 25 19
Semester IV
s. | Course Periods per
. u
i eek i
No. | Code Course Title Type w TCP Credits| Category
L |(T| P
1. Project Work I - 0 |0] 24| 24 12 SD
Total Credits | 24 12

PROGRAMME ELECTIVE COURSES (PE)

S c Periods per

. ourse .

No. Code Course Title Type week TCP| credits

L | T| P

1 Advanceq Software Testing T 3 o 0 3 3
and Quality Assurance

2. Agile Methodologies T 3 |0 0 3 3

3. Web of Things T 3 |0 0 3 3

4 Text and Speech Processing T 3 |0 0 3 3

5 Advanced Deep Learning and T 3 |0 0 3 3
Neural Networks

6. Quantum Cryptography T 3 |0 0 3 3

7. Quantum Machine Learning T 3 |0 0 3 3

8. Alin loT T 3 10 0 3 3

9. Web 3.0 T 3 10 0 3 3

10. Advanced Large Language T 3 |o 0 3 3
Models

11. Edge and Fog Computing T 3 10 0 3 3

12 Green. Corn.putlng and T 3 o 0 3 3
Sustainability

13. Cognitive Computing T 3 10 0 3 3

14. Agentic Al T 3 |0 0 3 3

15. Mixed Reality T 3 10 0 3 3

16. BIogkchams Architecture and T 3 |o 0 3 3
Design

17. Human-Centered Al T 3 |0 0 3 3

18. Vibe Coding T 3 |0 0 3 3

19. Federated Learning T 3 |0 0 3 3

20, Dggp Learning for Computer T 3 o 0 3 3
Vision

Semester |

MA25C07 Advanced Mathematical Methods (CSIE)

Course Objectives:

e Develop an in-depth understanding of advanced concepts in linear algebra,
multivariate analysis, and number theory for computer science applications.

e Apply mathematical tools such as eigenvalue decomposition, SVD, and
multivariate statistical methods to real-world computing and data-driven
problems.

e Analyze and implement number-theoretic techniques for cryptography,
security, and algorithmic problem-solving in computer science.

Linear Algebra: Vector spaces, norms, Inner Products, Eigenvalues using QR
transformations, QR factorization, generalized eigenvectors, Canonical forms,
singular value decomposition and applications, pseudo inverse, least square
approximations.

Multivariate Analysis: Random vectors and matrices, Mean vectors and covariance
matrices, Multivariate normal density and its properties, Principal components,
Population principal components, Principal components from standardized variables.

Elementary Number Theory: The division algorithm, Divisibility and the Euclidean
algorithm, The fundamental theorem of arithmetic, Modular arithmetic and basic
properties of congruences; Principles of mathematical induction and well ordering
principle. Primality Testing algorithms, Chinese Remainder Theorem, Quadratic
Congruence.

Advanced Number Theory: Advanced Number Theory, Primality Testing
algorithms, Chinese Remainder Theorem, Quadratic Congruence, Discrete
Logarithm, Factorization Methods, Side Channel Attacks, Shannon Theory, Perfect
Secrecy, Semantic Security.

Weightage: Continuous Assessment: 40%, End Semester Examinations: 60%.

Assessment Methodology: Assignments (15), Quiz (10), Virtual Demo (20),
Flipped Class Room (10), Review of Gate and IES Questions (25), Project (20).

References:

1. Gilbert Strang, Linear Algebra and Its Applications, Cengage Learning.

2. Richard A. Johnson & Dean W. Wichern, Applied Multivariate Statistical Analysis,
Pearson.

3. Neal Koblitz, A Course in Number Theory and Cryptography, Springer.

4. Victor Shoup, A Computational Introduction to Number Theory and Algebra,
Cambridge University Press.

E-resources:
1. https://ocw.mit.edu/courses/18-06-linear-algebra

2. https://nptel.ac.in/courses/111105041
3. https://crypto.stanford.edu/pbc/notes/numbertheory

https://ocw.mit.edu/courses/18-06-linear-algebra
https://nptel.ac.in/courses/111105041
https://crypto.stanford.edu/pbc/notes/numbertheory

CP25C01 Advanced Data Structures and Algorithms

Course Objectives:

1. To explore advanced linear, tree, and graph data structures and their
applications.

2. To design efficient algorithms using appropriate algorithmic paradigms.

3. To evaluate computational complexity and identify tractable vs. intractable
problems.

Linear Data Structures and Memory Optimization: Advanced arrays: Sparse
arrays, dynamic arrays, cache-aware structures, Linked lists: Skip lists, unrolled
linked lists, XOR linked lists, Stacks and Queues: Priority queues, double-ended
queues, circular buffers, Hashing: Perfect hashing, cuckoo hashing, extendible
hashing.

Practical:
e Implement skip lists and measure performance compared with balanced BST.
e Experiment with cache-aware data structures and analyze memory utilization.

Advanced Tree Data Structures: Balanced Trees: AVL, Red-Black Trees, Splay
Trees, Treaps, Multi-way Trees: B-Trees, B+ Trees, R-Trees, Segment Trees,
Fenwick Trees, Suffix Trees and Tries for string processing, Applications in indexing,
text retrieval, computational geometry.

Practical:

e Implement B+ tree for database indexing use-case.
e Design a suffix tree-based algorithm for DNA sequence matching.

Graph Data Structures and Algorithms: Representation: Adjacency list/matrix,
incidence matrix, compressed storage, Traversals: DFS, BFS with applications,
Shortest Path Algorithms: Dijkstra, Bellman-Ford, Floyd-Warshall, Johnson’s
algorithm, Minimum Spanning Trees: Prim’s, Kruskal’s, Borlivka’s algorithm, Network
Flow Algorithms: Ford-Fulkerson, Edmonds-Karp, Push-Relabel.

Practical:

e Implement Johnson’s algorithm for sparse graph shortest paths.
e Demonstration of Maximum flow in traffic or network routing simulation.

Algorithm Design and Paradigms: Divide and Conquer: Karatsuba’s multiplication,
Strassen’s algorithm, Greedy Methods: Huffman coding, interval scheduling, set
cover approximation, Dynamic Programming: Matrix chain multiplication, Floyd-
Warshall, knapsack variants, Backtracking and Branch-and-Bound, Randomized
Algorithms and Probabilistic Analysis.

Practical:

e Implement Strassen’s algorithm and compare with naive matrix multiplication.
e Develop a randomized algorithm for primality testing (Miller—Rabin).

Computational Complexity and Approximation Algorithms: Complexity Classes:
P, NP, NP-Complete, NP-Hard, Reductions: Polynomial-time reductions, Cook-Levin
theorem (overview), Approximation Algorithms: Vertex cover, set cover, TSP, k-
center problem, Heuristic Algorithms: Local search, simulated annealing, genetic
algorithms.

Practical:

e Implement approximation algorithm for vertex cover.
Complexity analysis of a chosen NP-hard problem and implement a heuristic.

Advanced Topics and Emerging Trends: Randomized Algorithms — Monte Carlo
Algorithms, Parallel and Distributed Algorithms — PRAM Model, Divide and Conquer
in Parallel, Load Balancing, Streaming Algorithms — Data Stream Models, Sketching
and Sampling, Frequency Moments, Advanced String Matching — Suffix Trees, Suffix
Arrays, Pattern Matching in Linear Time.

Practical:

¢ Implement randomized and streaming algorithms on real-world datasets.
e Design of parallel and distributed algorithms.

Weightage: Continuous Assessment: 50%, End Semester Examinations: 50%

Assessment Methodology: Assignments (15), Quiz (10), Virtual Demo (20),
Flipped Class Room (10), Review of Gate and IES Questions (25), Project (20)

References:
1. Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to

algorithms. MIT Press.

2. La Rocca, M. (2021). Advanced algorithms and data structures. Manning
Publications.

3. Goodrich, M. T., Tamassia, R., & Mount, D. M. (2011). Data structures and
algorithms in C++. John Wiley & Sons, Inc.

4. Weiss, M. A. (2014). Data structures and algorithm analysis in C++. Pearson
Education.

5. Drozdek, A. (2013). Data structures and algorithms in C++. Cengage
Publications.

E-resources:

1. https://www.theiotacademy.co/blog/data-structures-and-algorithms-in-c/

2. https://github.com/afrid18/Data structures and algorithms in cpp

3.https://www.udemy.com/course/introduction-to-algorithms-and-data-structures-

in-c/?srsltid=AfmBOorEZlkqV7QzaEh6lgzAaKL|{C-IpFU1NGgWFoHMLhOos-

uDVKjCK
Description of CO PO PSO

Describe data structures and implement

CO1 | algorithmic solutions for complex computational -- --
problems.

CO2 Analyze the tmeI compIeX|ty. and efficiency of PO1(3) PSO1(3)
algorithms for various computing problems.
Evaluate algorithmic techniques and data

CO3 | structures to determine their | PO3(2) PS02(2)
suitability for different applications.
Design optimized solutions for real-world

CO4 | problems using appropriate algorithms and data PO2(1) PSO1(3)

structures.

10

https://github.com/afrid18/Data_structures_and_algorithms_in_cpp
https://www.udemy.com/course/introduction-to-algorithms-and-data-structures-in-c/?srsltid=AfmBOorEZlkgV7QzaEh6IqzAaKLjC-IpFU1NGgWFoHMLhOos-uDVKjCK
https://www.udemy.com/course/introduction-to-algorithms-and-data-structures-in-c/?srsltid=AfmBOorEZlkgV7QzaEh6IqzAaKLjC-IpFU1NGgWFoHMLhOos-uDVKjCK
https://www.udemy.com/course/introduction-to-algorithms-and-data-structures-in-c/?srsltid=AfmBOorEZlkgV7QzaEh6IqzAaKLjC-IpFU1NGgWFoHMLhOos-uDVKjCK

CP25C02 Advanced Database Technologies

Course Objectives:

e To strengthen the understanding of enhanced ER models and their
transformation into relational models with indexing and file structures.

e To understand object-oriented and object-relational database concepts and
querying using OQL.

e To explore techniques in query processing, execution, and optimization
strategies.

Entity Relationship Model: Entity Relationship Model Revised-Subclasses,
Superclasses and Inheritance -Specialization and Generalization-Union Types-
Aggregation.

Activity: Design ER Model for a specific use case.

Enhanced Entity Relational Model: Relational Model Revised, Converting ER and
EER Model to Relational Model-SQL and Advanced Features, File Structures,
Hashing, and Indexing.

Activity: Demonstration of SQL Implementation.

Object Relational Databases: Object Database Concepts-Object Database
Extensions to SQL, The ODMG Object Model and ODL, Object Database
Conceptual Design-Object Query Language OQL-Language Binding in the ODMG
Standard.

Activity: Demonstration of Object Query Language.

Query Processing and Optimization: Query Processing, Query Trees and
Heuristics, Query Execution Plans, Cost Based Optimization.

Activity: Design of Query Evaluation Plans.

Distributed Databases: Real-Time Bidding, E-mail Marketing, Affiliate Marketing,
Social Marketing Mobile Marketing, Distributed Database Concepts, Data
Fragmentation, Replication and Allocation, Distributed Database Design
Techniques, Distributed Database Design Techniques, Distributed Database
Architectures.

Activity: Demonstration of Concurrency and Transactions.

NOSQL Systems and Bigdata: Introduction to NOSQL Systems-The CAP
Theorem, Document, based NOSQL Systems, Key-value Stores, Column-Based or
Wide Column NOSQL Systems, NOSQL Graph Databases and Neo4;.

Activity: Design application with MongoDB.

11

Advanced Database Models, Systems and Applications: Active Database
Concepts and Triggers, Temporal Database Concepts, Spatial Database Concepts,
Multimedia Database Concepts, Deductive Database Concepts, Introduction to
Information Retrieval and Web Search.

Activity: Demonstration of Hadoop infrastructure for Big Data Analytics.

Weightage: Continuous Assessment: 40%, End Semester Examinations: 60%

Assessment Methodology: Assignments (15), Quiz (10), Virtual Demo (20),
Flipped Class Room (10), Review of Gate and IES Questions (25), Project (20).

References:

1. Elmasri, R., & Navathe, S. B. (2016). Fundamentals of database systems.
Pearson Education.

2. Silberschatz, A., Korth, H. F., & Sudarshan, S. (2020). Database system
concepts, McGraw Hill Education.

3. Ceri, S., & Pelagatti, G. Distributed databases: Principles and systems. McGraw
Hill.

4. Ramakrishnan, R., & Gehrke, J. (2004). Database management systems.
McGraw Hill.

E-resources:

1. https://www.edx.org/learn/sql/stanford-university-databases-advanced-topics-in-

sql
2. https://www.coursera.org/courses?query=sql&productDifficultyLevel=Advanced

Description of CO PO PSO

Elaborate different database models for effective

CO1 | Jatabase design. B -

Implement advanced database features for optimized

co2 data retrieval.

PO1(3) | PSO1(3)

Evaluate query processing and optimization

CO3 . :
strategies to improve system performance.

PO3(2) | PSO2(2)

cO4 Design solutions using advanced database models to PO2(1)

address complex data-intensive applications. PSO1(3)

12

https://www.edx.org/learn/sql/stanford-university-databases-advanced-topics-in-sql
https://www.edx.org/learn/sql/stanford-university-databases-advanced-topics-in-sql
https://www.coursera.org/courses?query=sql&productDifficultyLevel=Advanced

CP25C03 | Advanced Operating Systems

Course Objectives:

e To analyze the architectures and design issues of advanced operating systems.

e To develop the model for process synchronization and recovery in complex
environments.

e To evaluate algorithms for distributed coordination, resource management, fault
tolerance, and security.

Advanced Process and Thread Management: Multithreading models, thread
pools, context switching, Synchronization issues and solutions: semaphores,
monitors, lock-free data structures, CPU scheduling in multi-core systems

Activity: CPU scheduler simulation for multicore systems.

Memory and Resource Management in Modern OS: Virtual memory, demand
paging, page replacement policies-Huge pages, NUMA-aware memory
management-Resource allocation in cloud-native environments

Activity: Simulate demand paging and page replacement algorithms.

Virtualization and Containerization: Hypervisors (Type | & 1), KVM, QEMU, Xen-
Containers: Docker, LXC, systemd-nspawn-OS-level virtualization and namespaces

Activity: Deploy and configure Docker containers with various images.

Distributed Operating Systems and File Systems: Distributed scheduling,
communication, and synchronization-Distributed file systems: NFS, GFS, HDFS-
Transparency issues and fault tolerance

Activity: Simulate distributed process synchronization.

Security and Trust in Operating Systems: Access control models: DAC, MAC,
RBAC-OS hardening techniques, sandboxing, SELinux, AppArmor-Secure boot,
rootkit detection, trusted execution environments

Activity: Implement Role-Based Access Control (RBAC) using Linux user and group
permissions.

Real-Time and Embedded Operating Systems: Real-time scheduling algorithms
(EDF, RM)-POSIX RT extensions, RTOS architecture-TinyOS, FreeRTOS case
studies

Activity: Analyze FreeRTOS task scheduling behavior.

13

Edge and Cloud OS: Future Paradigms: Serverless OS, unikernels, lightweight
OS for edge computing-Mobile OS internals (Android, iOS)-OS for quantum and
neuromorphic computing (intro)

Activity: Analyze Android’s system architecture using emulator tools.

Weightage: Continuous Assessment: 40%, End Semester Examinations: 60%

Assessment Methodology: Assignments (15), Quiz (10), Virtual Demo (20),
Flipped Class Room (10), Review of Gate and IES Questions (25), Project (20).

References:

1.
2.

Tanenbaum, A. S., & Bos, H. (2023). Modern operating systems. Pearson.
Buyya, R., et al. (2022). Content delivery networks and emerging operating
systems. Springer.

Silberschatz, A., Galvin, P. B., & Gagne, G. (2022). Operating system concepts.
Wiley.

Anderson, T., & Dahlin, M. (2021). Operating systems: Principles and practice.
Recursive Books.

Arpaci-Dusseau, R. H., & Arpaci-Dusseau, A. C. (2020). Operating systems:
Three easy pieces.

E-Resources:

1. Prof. Smruti Ranjan Sarangi, “Advanced Distributed Systems”, IIT Delhi, NPTEL,
https://onlinecourses.nptel.ac.in/noc22 cs80/preview
2. Prof. Rajiv Misra, “Cloud Computing and Distributed Systems”, lIT Patna, NPTEL,
https://nptel.ac.in/courses/106104182
Description of CO PO PSO
CO1 Describe operating system concepts for memory and _ _
resource management.
cO2 Analys'e. virtualization and distributed OS mechanisms for PO1(3) | PSO1(3)
scalability and performance.
CO3 E.valuate O.S security and resource handling strategies in PO3(2) | PSO2(2)
diverse environments.
Design innovative OS solutions using modern tools and
coa | -9 g PO2(1) | pso1(3)
techniques.

14

https://www.youtube.com/playlist?list=PLLDC70psjvq5hIT0kfr1sirNuees0NIbG
https://onlinecourses.nptel.ac.in/noc22_cs80/preview
https://nptel.ac.in/courses/106104182

CP25C04 Advanced Compiler Design

Course Objective:

e To analyze the theory and principles of modern compiler design and advanced
optimization techniques.

e To design and implement efficient front-end and back-end compiler components
for programming languages.

e To evaluate code optimization strategies and runtime environment management
in contemporary architectures.

Intermediate Representations and Control Flow Analysis: Static single
assignment (SSA) form- Context-Free Grammer (CFG) construction-dominance
relations-Intermediate Representation (IR) design for functional and imperative
languages-Static single assignment and def-use chains

Activities:

1. Convert source code to SSA form using LLVM IR.
2. Visualize control flow graphs from SSA using LLVM tools.

Program Analysis and Transformations: Data flow analysis- live variable analysis-
reaching definitions-Alias analysis and dependence analysis-Loop optimizations and
transformations

Activities:

1. Perform loop unrolling and strength reduction.
2. Conduct live variable analysis and visualize data flow graphs.

Advanced Optimizations and Polyhedral Compilation: Polyhedral model for loop
nests-Tiling, skewing, fusion, and vectorization-Profile-guided and feedback-directed
optimizations

Activities:

1. Implement loop tiling and loop skewing on a matrix multiplication program.

2. Analyze the effect on loop-intensive code with LLVM optimization flags.

Just-in-Time (JIT) and Runtime Compilation: JIT compilation models: tracing,
method-based-GraalVM architecture, Java HotSpot internals-LLVM JIT and dynamic
language support

Activities:

1. Develop a basic JIT-enabled interpreter with LLVM or GraalVM.
2. Implement dynamic dispatch using LLVM JIT API.

15

Machine Learning in Compiler Design: ML for phase ordering, auto-tuning, and IR
prediction-Reinforcement learning for optimization passes-Dataset creation and
benchmarking for compiler ML

Activities:

1. Train an ML model to predict optimization passes.
2. Use reinforcement learning for pass selection in toy compiler.

Domain-Specific Languages (DSLs) and Compiler Extensions: Designing DSLs
for AI/ML, DSP, graphics-Code generation for custom accelerators-Integration with
TensorFlow XLA and Halide

Activities:

1. Design and test a simple DSL grammar using ANTLR.
2. Integrate a DSL with TensorFlow XLA or Halide.

Security, Verification, and Future Trends: Secure compilation and type-safe
intermediate representations-Compiler fuzzing and formal verification (e.g.,
CompCert)-Quantum compilers, multi-target compilers, and neuromorphic systems

Activities:
1. Use CompCert to verify compilation of simple programs.
2. Apply compiler fuzzing using tools like libFuzzer.

Weightage: Continuous Assessment: 40%, End Semester Examinations: 60%

Assessment Methodology: Assignments (15), Quiz (10), Virtual Demo (20),
Flipped Class Room (10), Review of Gate and IES Questions (25), Project (20).

References:

1. Cooper, K. D., & Torczon, L. (2023). Engineering a compiler. Morgan Kaufmann.

2. Grune, D., Bal, H. E., Jacobs, C. J. H., & Langendoen, K. G. (2012). Modern
compiler design (2nd ed.). Springer.

3. Aho, A. V., Lam, M. S., Sethi, R., & Ullman, J. D. (2006). Compilers: Principles,
techniques, and tools (2nd ed.). Pearson.

4. Volter, M. (2013). DSL engineering: Designing, implementing and using domain-
specific languages. dslbook.org.

5. Sarda, S., & Pandey, M. (2015). LLVM essentials. Packt Publishing.

E-Resources:

1. Prof. AmeyKarkare, [IT Kanpur, “Advanced Compiler Optimizations”
Link: https://www.cse.iitk.ac.in/users/karkare/Courses/cs738/

2. Prof. Santanu Chattopadhyay, “Compiler Design”, [IT Kharagpur
Link:” https://onlinecourses.nptel.ac.in/noc21 cs07/preview”

16

https://www.cse.iitk.ac.in/users/karkare/Courses/cs738/
https://onlinecourses.nptel.ac.in/noc21_cs07/preview

Description of CO PO PSO

CO1 Explain intermediate control flow techniques in _ _
compiler design.

CcO2 Apply. program analysis techniqges and advanced PO1(3) PSO1(3)
optimizations for design of compilers.

CcO3 Devellop compiler_ fe_atu.res and machine learning PO3(2) PS02(2)
techniques for optimization.

co4 Evaluate secure compilation strategies for| PO2(1) PSO1(3)

quantum and multi-target compilation.

17

